

African Journal of Emerging Issues (AJOEI) Online ISSN: 2663 - 9335

Available at: https://ajoeijournals.org

STRATEGIC MANAGEMENT

COMPETITIVE PRICING STRATEGY AND PERFORMANCE OF AGRI-BASED COOPERATIVES IN KENYA

^{1*}Maureen Achieng Oketch, ²Dr. Kabare Karanja, PhD & ³Dr. Susan Wekesa, PhD
 ¹Postgraduate student, Jomo Kenyatta University of Agriculture and Technology
 ^{2&3}Lecturers, Jomo Kenyatta University of Agriculture and Technology
 *Email of the corresponding author: marimon.ent@gmail.com

Publication Date: October 2025

ABSTRACT

Purpose of the study: The study examined the effect of competitive pricing strategy on the performance of agri-based cooperatives in Kenya. The study was anchored on dynamic capabilities theory which provides the foundation for understanding how competitive pricing strategy influences organizational performance through adaptive pricing capabilities in changing market environments.

Methodology: A descriptive research design was employed, targeting 24 agri-based cooperatives with 144 respondents from various management levels. Primary data were collected through structured questionnaires using five-point Likert scales, while secondary data were obtained from financial reports covering 2018-2023. Data were analyzed using SPSS software involving data coding and analysis to produce descriptive statistics (means, standard deviations, frequencies) and inferential statistics (correlation and simple regression analysis).

Findings: The study found a strong positive correlation between competitive pricing strategy and performance (r = 0.766, p = 0.000), with competitive pricing strategy having substantial individual impact ($R^2 = 0.386$, $\beta = 0.700$, p = 0.000). Competitive pricing strategy explained 38.6% of the variance in cooperative performance, indicating that when cooperatives focus on cost

minimization, efficient sourcing, and production optimization, these pricing-related activities account for more than one-third of the performance differences among cooperatives.

Conclusion: The study concludes that competitive pricing strategy significantly influences cooperative performance outcomes through strategic cost management and market positioning approaches.

Recommendations: The study recommends that managers should develop comprehensive competitive pricing strategies, conduct regular market research, implement dynamic pricing mechanisms, and foster continuous improvement culture through member engagement and crossfunctional collaboration. Policymakers should create supportive regulatory environments, establish cooperative support hubs offering technical assistance and digital tools, develop market information systems, and provide incentives for pricing innovation, aligning with Kenya's Vision 2030 and Sustainable Development Goals to promote agri-based cooperative development and sustainability.

Keywords: Competitive pricing strategy, performance, agri-based cooperatives, Kenya

BACKGROUND OF THE STUDY

In 2020, Butcher and David cited a statement made just over 25 years ago by Hood *et al.* (1993: 14) who made the following observations that is still true today: Cross-sectoral collaborations are unusual groups in many ways. Performance is critical in intensifying the sustainability of the institutions. Performance is defined as the difference between revenue and costs/expenses used to generate that income. Firm performance emulates implementation of strategies that give a competitive advantage over other firms. The performance of firms is measured through financial and non-financial performance indicators in which the financial factors include the profits level, return on assets, return in equity, sales revenue and non-financial indicators comprise of the market share, customer retention and company reputation. Magutu, & Ongeri, (2020). Cooperatives that do not actively engage in process improvement may find it challenging to keep pace with industry advancements.

In contemporary competitive markets, the ability to establish and maintain optimal pricing strategies has emerged as a fundamental determinant of organizational success and market positioning. Competitive pricing strategy represents a comprehensive approach to price

determination that balances cost efficiency, market competitiveness, and value delivery to achieve superior organizational performance (Kang & Jeong, 2019). This strategic approach involves systematic analysis of market dynamics, competitor positioning, and internal cost structures to develop pricing mechanisms that enable organizations to compete effectively while maintaining profitability and sustainable growth.

The significance of competitive pricing extends beyond simple cost considerations to encompass strategic positioning, market penetration, customer value creation, and long-term competitive advantage in dynamic business environments. The theoretical foundation for competitive pricing strategy effectiveness draws from Porter's generic strategies framework, which identifies cost leadership as a fundamental competitive approach for achieving market dominance. Organizations implementing effective competitive pricing strategies systematically analyze their cost structures, streamline operations, and optimize resource utilization to offer competitive prices while maintaining quality standards (Laite, 2018). This approach enables companies to attract price-sensitive customers, increase market share, and establish sustainable competitive positioning against rivals. Contemporary research demonstrates that competitive pricing strategies significantly influence customer acquisition, retention, and loyalty, creating virtuous cycles of market growth and performance enhancement that benefit both organizations and their stakeholders.

Market dynamics in developing economies create unique challenges and opportunities for competitive pricing strategy implementation. Organizations operating in price-sensitive markets must carefully balance cost minimization with quality maintenance to achieve optimal market positioning (Imran, Hamid & Aziz, 2018). The complexity increases when organizations serve multiple market segments with varying price sensitivities, purchasing power, and value expectations. Successful competitive pricing requires sophisticated understanding of market segmentation, customer behavior, cost dynamics, and competitive responses to develop pricing strategies that maximize market penetration while ensuring financial sustainability and stakeholder value creation..

Agri-based cooperatives represent a distinctive organizational context for competitive pricing strategy implementation due to their dual mission of member service and financial sustainability. Unlike conventional profit-maximizing enterprises, cooperatives must develop pricing strategies

that balance member benefits with organizational viability, creating complex pricing optimization challenges (Masika & Simiyu, 2019). Agricultural markets add additional complexity through seasonal price variations, commodity market volatility, supply chain uncertainties, and weather-dependent production cycles that directly impact pricing decisions. These characteristics make competitive pricing strategy particularly critical for cooperative success, as pricing inefficiencies can quickly translate into reduced member benefits, financial losses, and competitive disadvantage against private agricultural businesses.

The Kenyan agricultural cooperative sector provides a compelling context for examining competitive pricing strategy effects due to the sector's economic importance and unique market challenges. Kenya's agri-based cooperatives operate in highly competitive environments where they compete with private companies, government agencies, and international organizations for market share and member loyalty (Kavulya, Muturi, Rotich & Ogollah, 2018). Market liberalization has intensified competitive pressures, requiring cooperatives to adopt sophisticated pricing strategies to maintain relevance and effectiveness. Many cooperatives struggle with pricing decisions due to limited market analysis capabilities, inadequate cost accounting systems, and insufficient understanding of competitive dynamics that affect their market positioning and member value propositions.

Current research reveals significant variation in competitive pricing strategy adoption and effectiveness among Kenyan agri-based cooperatives. Some cooperatives have successfully implemented cost leadership approaches, value-based pricing mechanisms, and dynamic pricing systems that have enhanced their market competitiveness and member satisfaction (Guandaru, 2019). However, many cooperatives continue to rely on traditional, cost-plus pricing methods that fail to consider market dynamics, competitive positioning, and member value optimization. This variation creates important research opportunities to understand how competitive pricing strategies influence cooperative performance and identify specific pricing dimensions that drive superior market outcomes in the Kenyan agricultural context.

The competitive pricing strategy construct encompasses multiple interrelated dimensions that collectively influence organizational market performance. Cost minimization involves systematic efforts to reduce operational expenses, optimize resource utilization, and eliminate inefficiencies to enable competitive price offerings without compromising quality or service levels (Gu, Qi &

Wang, 2018). Efficient sourcing encompasses strategic procurement practices, supplier relationship management, and supply chain optimization to achieve cost advantages that can be passed to customers through competitive pricing. Production efficiency focuses on operational optimization, technology adoption, and process improvement to reduce unit costs and enable competitive pricing while maintaining profit margins and quality standards.

The significance of this research lies in its potential to provide empirical evidence on how competitive pricing strategy influences the performance of agri-based cooperatives in Kenya, contributing to both academic knowledge and practical management guidance. From a theoretical perspective, the study extends understanding of pricing strategy-performance relationships in cooperative contexts, providing evidence on how market-based pricing approaches apply to member-owned organizations operating in developing country agricultural markets. From a practical standpoint, the research offers valuable direction for cooperative managers, board members, and policy makers seeking to enhance cooperative competitiveness through strategic pricing optimization. The findings have implications for cooperative development programs, management training initiatives, and policy frameworks designed to support the agricultural cooperative sector's contribution to Kenya's economic development and rural livelihood improvement objectives.

STATEMENT OF THE PROBLEM

In optimal circumstances, agri-based cooperatives should strategically leverage competitive pricing mechanisms to enhance their market positioning and performance outcomes. These pricing strategies should encompass systematic cost management, value-based pricing approaches, and dynamic pricing capabilities to create sustainable competitive advantages and superior market performance. Effective competitive pricing strategy should enable cooperatives to attract and retain customers, maximize market share, and achieve financial sustainability while serving member interests and maintaining competitive positioning against private agricultural businesses and other service providers in dynamic market environments.

However, competitive pricing strategy in agri-based cooperatives in Kenya remains significantly underutilized, resulting in declining performance indicators that threaten organizational sustainability and market competitiveness. This underutilization is evidenced by concerning performance trends where agri-based cooperatives experienced a profit decline from Kshs14.08

billion in 2021 to Kshs13.91 billion in 2022. Additionally, the Kenya National Chamber of Commerce and Industry reported a substantial 31.6% decrease in sales during 2022, highlighting systemic performance challenges across the sector that directly relate to ineffective pricing strategies and market positioning failures.

Academic research corroborates these troubling pricing-related trends. Studies by Masika and Simiyu (2019) reveal widespread pricing issues including inadequate cost analysis systems, lack of market-based pricing mechanisms, and insufficient competitive pricing capabilities within cooperatives. Many cooperatives continue to rely on traditional cost-plus pricing methods that fail to consider market dynamics, competitive positioning, and member value optimization (Kavulya, Muturi, Rotich & Ogollah, 2018). These findings suggest fundamental failures in implementing effective competitive pricing strategies that could drive cooperative market competitiveness and performance enhancement through strategic cost management and value-based pricing approaches.

Despite this empirical evidence supporting competitive pricing strategy effectiveness, the relationship between competitive pricing strategy and performance in Kenya's agri-based cooperatives remains insufficiently understood and inadequately implemented. Limited research has examined how specific competitive pricing dimensions influence cooperative performance within the unique context of agricultural cooperatives operating in developing country markets where price sensitivity, purchasing power constraints, and competitive dynamics create complex pricing challenges. This gap necessitates comprehensive investigation to understand how competitive pricing strategy influences cooperative performance and to identify specific pricing dimensions that drive superior market outcomes in the Kenyan agricultural cooperative context.

RESEARCH OBJECTIVE

The objective of the study was to investigate the effect of competitive pricing strategy on performance of agri-based cooperatives in Kenya

RESEARCH HYPOTHESIS

The study was guided by the following null hypothesis.

H₀: Competitive pricing strategy does not have a significant effect on performance of Agri based cooperatives in Kenya

LITERATURE REVIEW

The literature review is discussed in sections.

Theoretical Framework

The study was anchored on dynamic capabilities theory which provides the foundation for understanding how competitive pricing strategy influences organizational performance. The theory was first formulated by Teece (1990) and later expounded by Ambrosini and Bowman (2009). The theory examines how firms integrate, build and reconfigure their internal and external firm-specific competencies into new competencies that match their turbulent environment (Teece, Pisano & Shuen, 2010). The theory assumes that firms with more exceptional dynamic capabilities will outperform firms with smaller dynamic capabilities. The primary objective of the theory is to understand how firms use dynamic capabilities to create and sustain strategy implementation over other firms by responding to and creating environmental changes. Organizations must understand opportunities and threats to seize the opportunities whilst maintaining competence through enhancing, merging, shielding and if required reconfiguring the organization's tangible and intangible assets.

The theory highlights the path of evolution for capabilities whereby distinctive capabilities arise from the development of previous capabilities (Ambrosini & Bowman, 2009). According to Bradley (2002), opportunities for net-enablement are also creating a strategic and tactical quagmire for many firms. They struggle to assimilate the rapid pace of innovation in information technologies and the emerging business practices that work with it. In the same way, organizations must understand opportunities and threats to seize the opportunities whilst maintaining dynamic capabilities through enhancing competitive pricing. The theory further establishes that there is need for considerations to be made on the situations of the changing external environment and therefore contributing to strategic choices as well as external resources of the organization, skills and practical competency for dynamic environment (Teece, 1990). This theory is relevant to the current study since it helps assess the extent to which competitive pricing strategy influences performance among agri-based cooperatives in Kenya through their ability to dynamically adapt pricing mechanisms to changing market conditions and competitive environments.

Conceptual Framework

A conceptual framework illustrates the hypothesized relationships between key constructs, guiding the study's design, data collection, and analysis by providing a theoretical roadmap for examining how variables interact within the research context (Kothari, 2011). The conceptual framework for this study demonstrates the relationship between competitive pricing strategy as the independent variable and performance as the dependent variable in agri-based cooperatives. The independent variable, competitive pricing strategy, encompasses the systematic approaches adopted by cooperatives to optimize their market positioning through cost minimization (reducing operational expenses and optimizing resource utilization), efficient sourcing (strategic procurement and supply chain optimization), and production efficiency (operational improvements to reduce unit costs while maintaining quality). The dependent variable, performance, represents measurable outcomes reflecting cooperative effectiveness, including profitability (ability to generate financial returns), market share (competitive position within the agricultural sector), and growth (expansion capabilities and developmental progress). The framework proposes that effective implementation of competitive pricing strategy positively influences cooperative performance outcomes in Kenya's agricultural sector. Figure 1 depicts the conceptual framework.

Independent Variable

Figure 1: Conceptual Framework

Review of Empirical Literature of Competitive Pricing Strategy and Performance

Ferguson (2019) examined external organizational relationships and found that this array includes relationships with external organizations covering a broad range of activities such as partnerships, benchmarking, risk-sharing, industry development and collaborations, with some theories viewing these external resources as sufficiently important to replace the concept of organisational capabilities with that of resources = capabilities + networks. However, the study presents a conceptual gap because it focused on general external relationships and network resources without examining specific competitive pricing strategy dimensions relevant to agricultural cooperatives

such as member pricing policies, input cost management, product marketing pricing, and cooperative surplus distribution mechanisms that leverage external networks for pricing advantage, while the current study specifically examined competitive pricing strategy encompassing cost leadership, value-based pricing, and member benefit optimization within cooperative contexts. Therefore, there was need to examine competitive pricing concepts specifically tailored to agricultural cooperative network relationships and pricing capabilities.

Daft and Armstrong (2024) investigated competitive pricing in agricultural cooperatives and found that competitive pricing fosters cost-efficiency within agricultural cooperatives, with cooperatives that strategically manage their pricing being able to optimize resource utilization, reduce wastage, and lower operational expenses, leading to cost-effectiveness that directly contributes to higher profit margins and positively impacts financial performance of cooperatives. Nevertheless, the study presents a methodological gap because it adopted theoretical analysis without empirical testing of competitive pricing strategy effects on cooperative performance using quantitative measurement instruments, while the current study adopted a descriptive survey research design examining 140 agri-based cooperatives using quantitative analysis with structured questionnaires to measure competitive pricing strategy impacts on organizational performance. Thus, there was need for empirical quantitative research to establish statistical relationships between competitive pricing strategy and cooperative performance.

Noam (2021) studied price measurement challenges and found that price deflators are needed to obtain changes in real GDP but prices are often poorly measured in developing countries, with recent controversy in Rwanda regarding poverty measurement resulting from differences in inflation measurements where Consumer Price Index suggested 23 percent inflation rate while National Institute of Statistics used 4.7 percent inflation rate to calculate poverty rates. However, the study presents a contextual gap because it focused on macroeconomic price measurement and inflation calculation in national economic contexts while the current study examined competitive pricing strategy in agri-based cooperatives operating at organizational level within Kenya's agricultural sector where pricing challenges, market dynamics, and measurement requirements differ substantially from macroeconomic price deflator contexts. Accordingly, there was need to understand competitive pricing strategy effectiveness within the specific operational context of agricultural cooperative organizations.

Cram et al. (2019) examined competitive pricing strategies in retail sector and found that firms implementing dynamic pricing strategies achieved 22% higher profit margins compared to those using static pricing approaches, with effectiveness of competitive pricing strategies varying across product categories and strongest impact seen in electronics and fashion segments, concluding that investing in advanced pricing technologies and data analytics capabilities can significantly enhance retail performance in competitive markets. Nonetheless, the study presents a contextual gap because it focused on U.S. retail sector analyzing 312 retailers over three years while the current study examined agri-based cooperatives in Kenya's agricultural sector where pricing challenges, product characteristics, and market structures differ significantly from developed country retail contexts. Therefore, there was need to understand competitive pricing strategy effects within the specific market context of Kenyan agricultural cooperatives.

Homburg *et al.* (2023) investigated AI-driven pricing strategies and found that firms implementing AI-powered pricing solutions experienced 24% increase in price realization and 17% improvement in customer retention rates, with performance impact of AI pricing being strongest in industries with complex product portfolios and highly volatile demand patterns, emphasizing growing importance of AI and machine learning capabilities in developing effective competitive pricing strategies. However, the study presents a conceptual gap because it focused on AI-driven pricing technologies without examining specific competitive pricing strategy dimensions relevant to agricultural cooperatives such as seasonal pricing adjustments, member dividend policies, input cost pass-through mechanisms, and cooperative pricing governance that may not require sophisticated AI systems, while the current study specifically examined competitive pricing strategy concepts appropriate for agricultural cooperative resource capabilities. Thus, there was need to examine competitive pricing concepts specifically designed for agricultural cooperative technological and resource contexts.

Getachew (2019) studied African agricultural product pricing and found that African countries and producers benefit very little from agricultural products including those well known in international market and fetch higher prices, with branding potentially helping address problems countries face in marketing distinctive agricultural products, though these tools are inadequately used in protecting agricultural product brands locally with only handful of brands protected in foreign countries. Nevertheless, the study presents a methodological gap because it adopted descriptive

analysis of agricultural branding and intellectual property protection without quantitative measurement of competitive pricing strategy effects on organizational performance, while the current study employed structured questionnaires with inferential statistical analysis to examine competitive pricing strategy impacts on cooperative performance. Consequently, there was need for quantitative empirical research to examine competitive pricing strategy effects using standardized measurement approaches in agricultural cooperatives.

Ma (2023) examined market competition and performance measurement and found that market competition, performance measurement and customer orientation were introduced into government with government practices increasingly mimicking those of private businesses, though NPM-oriented reforms helped mitigate some traditional bureaucracy problems while introducing their own problems including hollowed out government capability and weakened horizontal coordination. However, the study presents a contextual gap because it focused on government sector performance measurement and market competition approaches while the current study examined agri-based cooperatives operating as member-owned organizations in Kenya's agricultural sector where competitive dynamics, performance objectives, and organizational structures differ substantially from government sector contexts. Therefore, there was need to understand competitive pricing strategy effectiveness within the specific organizational context of democratic agricultural cooperatives.

Schijvenaars *et al.* (2023) investigated digital maturity and organizational performance and found that maturity models can guide organizations toward domain maturity by establishing desired tobe situation based on known experience and best practices, with maturity assessment positioning organization on maturity model to determine as-is situation and provide relevant information about current challenges and opportunities for strategic planning to become mature data-driven organization. Nonetheless, the study presents a conceptual gap because it focused on general digital maturity and data-driven organizational development without examining specific competitive pricing strategy dimensions relevant to agricultural cooperatives such as cost-based pricing models, value-chain pricing optimization, and member-focused pricing policies that require different maturity considerations, while the current study specifically examined competitive pricing strategy concepts tailored to agricultural cooperative operational maturity.

Thus, there was need to examine competitive pricing concepts specifically relevant to agricultural cooperative organizational development and maturity contexts.

Zhang and Chen (2023) studied platform-based business pricing and found that sellers utilizing AI-driven dynamic pricing algorithms achieved 32% higher sales growth and 24% improved profit margins compared to those using manual pricing methods, with effectiveness being influenced by platform-specific features like search rankings and recommendation algorithms, and sellers combining dynamic pricing with personalized promotional strategies experiencing synergistic effect resulting in 45% higher customer lifetime value. However, the study presents a contextual gap because it analyzed transaction data from global e-commerce platform sellers over 18 months while the current study examined agri-based cooperatives in Kenya's agricultural sector where pricing platforms, market mechanisms, and customer relationships differ significantly from digital e-commerce platform contexts. Accordingly, there was need to understand competitive pricing strategy effects within the specific market platform context of agricultural cooperative operations.

Kienzler and Kowalkowski (2021) conducted comprehensive meta-analysis of pricing strategies and firm performance and found significant positive correlation between strategic pricing approaches and multiple performance metrics (r = 0.38, p < 0.001) from analysis of 87 empirical studies including data from over 25,000 firms across various industries and countries, with impact of pricing strategies on performance strengthening over the decade suggesting increasing importance of pricing in driving competitive advantage. Nevertheless, the study presents a methodological gap because it adopted meta-analytical approach synthesizing results from multiple studies using different methodologies and contexts across various industries, while the current study adopted primary descriptive survey research design with consistent methodology examining agri-based cooperatives in single country context using standardized measurement instruments. Therefore, there was need for primary empirical research with consistent methodology to establish specific competitive pricing strategy-performance relationships in agricultural cooperatives.

RESEARCH METHODOLOGY

The study adopted a descriptive research design employing positivistic philosophy which is based on objectivity, neutrality, measurement and validity of results (Kothari, 2013). The descriptive design was chosen over experimental or exploratory designs because it enables systematic

description and quantification of existing relationships between competitive pricing strategy and performance without manipulating variables, which is appropriate for examining real-world cooperative operations in their natural settings. The target population comprised 24 agri-based cooperatives in Kenya as identified by SASRA (2022). Stratified sampling was employed to select respondents across three management levels: top-level management, middle-level management, and supervisory-level management from each cooperative, with proportional allocation ensuring equal representation of six respondents per cooperative (two from each management level) regardless of cooperative size, region, or type. The managers were systematically selected using employee registers from each cooperative, resulting in a total sample size of 144 respondents. This stratification approach was essential because different management levels possess unique perspectives on competitive pricing strategy implementation and performance impacts based on their specific roles and responsibilities within the cooperative.

Data collection utilized both primary and secondary instruments over a systematic four-week period using drop-and-pick methodology, with non-response bias mitigated through follow-up visits and telephone reminders, while data integrity was ensured through pre-coded questionnaires and verification of respondent identities against cooperative records. Primary data was obtained through structured questionnaires employing five-point Likert scales administered to cooperative managers and supervisors. Secondary data covering performance indicators (profitability, market share and growth) was extracted from audited financial statements and official cooperative records spanning 2018-2023. Data analysis was conducted using SPSS version 26, employing descriptive statistics (mean, standard deviation, frequencies) and inferential analysis (correlation and simple linear regression). The study conducted simple regression analysis since it involved examining the relationship between competitive pricing strategy as the independent variable and performance as the dependent variable. Prior to regression analysis, comprehensive diagnostic tests confirmed that all classical linear regression assumptions were met, including linearity (verified through scatter plot analysis), normality (confirmed via Kolmogorov-Smirnov and Shapiro-Wilk tests with pvalues >0.05), absence of multicollinearity (VIF values <10), and homoscedasticity (Breusch-Pagan test p-value = 0.2384), ensuring the validity and reliability of statistical results.

RESEARCH FINDINGS AND DISCUSSIONS

This chapter presents the data analysis, research findings, and interpretation.

Response Rate

The study adopted a descriptive research design where all possible study subjects were enumerated. Therefore, the number of questionnaires distributed to respondents was 144 in tandem with sample frame. Out of the 144 questionnaires, 129 were correctly, fully filled and returned. This presented a response rate of 89.58% which according to Kothari (2011) is appropriate for analysis; while 15 questionnaires were either never filled at all by respondents or not returned and could not be reached representing 10.42% of the questionnaires.

Descriptive Statistics

The descriptive statistics of the study variables included competitive pricing strategy and performance of agri- based cooperatives in Kenya.

Competitive Pricing Strategy

The researcher sought to pursue knowledge on competitive pricing strategies on performance among the respondents. Table 1 provides valuable insights into how competitive pricing strategies are perceived within the agricultural cooperative and their potential impact on its performance.

Table 1: Descriptive Statistics on Competitive pricing Strategy and performance

	Strongly				Strongly		Standard
Competitive Pricing	Disagree	Disagree	Neutral	Agree	Agree	Mean	deviation
The organization benchmark to							
compare the prices of its							
products and services to							
improve performance	19.00%	51.10%	5.60%	16.90%	7.40%	2.42	1.19
The organization has developed							
the production efficiencies to			0.4007	10 100/	0.4007		1.00
minimize the cost of production	7.40%	62.30%	9.10%	12.10%	9.10%	2.53	1.09
The low-cost strategy is							
communicated internally and	1.7. (00/	50.700/	7.400/	0.500/	7.000/	2.24	1 1
externally to all the employees.	15.60%	59.70%	7.40%	9.50%	7.80%	2.34	1.1
The organization charges lower							
prices for its products than other	21 200/	53 900/	2 (00/	10.000/	2 (00/	2.01	1.00
organizations in the industry	31.20%	52.80%	2.60%	10.80%	2.60%	2.01	1.00
The competitive pricing							
strategy has enabled the organization to enhance the							
performance	28.60%	49.40%	6.10%	12.60%	3.50%	2.13	1.07
The competitive pricing	20.0070	49.40 70	0.1070	12.0070	3.3070	2.13	1.07
strategy has been affected by							
the level of technology.	32.00%	44.60%	6.10%	14.30%	3.00%	2.12	1.10
The organization has	32.0070	11.0070	0.1070	11.5070	3.0070	2.12	1.10
emphasized the vigorous pursuit							
of cost minimization for the							
competitive sourcing of the raw							
materials	19.00%	43.30%	4.80%	20.80%	12.10%	2.64	1.33
Average						2.36	1.15

The study examined respondents' perceptions of competitive pricing strategy implementation within their cooperatives. Regarding organizational benchmarking to compare prices of products and services to improve performance, a majority of respondents (70.1%) disagree with this statement. Only 24.6% believe such benchmarking is in place. This suggests a disconnect between the perception of benchmarking and its actual implementation within the cooperative. This perception is critical, as benchmarking can help identify areas for improvement and enhance competitiveness. Ferguson (2019) noted that external organizational relationships include activities such as benchmarking, risk-sharing, industry development, and collaborations.

Concerning organizational development of production efficiencies to minimize production costs, a substantial 69.7% of respondents disagree with this statement. Only 21.2% believe in the development of such efficiencies. Nagle and Müller (2024) examined the relationship between pricing strategies and sustainability performance in a global study of 650 companies across various sectors. Their research found that firms adopting sustainable value pricing strategies, which incorporate environmental and social costs into pricing decisions, achieved 20% higher sustainability ratings and 15% better financial performance compared to firms using traditional pricing approaches.

Regarding communication of low-cost strategies internally and externally to all employees, 75.3% of respondents do not believe that low-cost strategies are effectively communicated. Only 17.3% perceive effective communication in this regard. Concerning whether the organization charges lower prices for its products than other organizations in the industry, an overwhelming 83% of respondents disagree, indicating that most believe the cooperative's prices are not lower than those of competitors. Only 12.4% think otherwise. Pearce (10th ed.) agreed that engaging in low-cost strategy is the only way to perfect the value chain. Somapa *et al.* (2020) surveyed 248 manufacturing firms in Thailand and found that companies employing value-based pricing strategies achieved 18% higher return on investment compared to those using cost-plus pricing. The study revealed that the positive impact of value-based pricing was moderated by market turbulence, with stronger effects observed in more stable market environments.

Regarding whether competitive pricing strategy has enabled the organization to enhance performance, the data reveals that while 16.1% agree with this assertion, 78% either disagree or remain uncertain about its impact. This indicates that the link between competitive pricing and

enhanced performance is not universally recognized among respondents. Lancioni, Gattorna, and Crum (2022) found that companies implementing value-based pricing strategies in their supply chain relationships experienced a 21% reduction in total supply chain costs and a 16% improvement in on-time delivery performance. Concerning whether competitive pricing strategy has been affected by the level of technology, a significant proportion of respondents (76%) either disagree or remain neutral regarding technology's influence on competitive pricing. This indicates that technology may not be considered a primary driver of the cooperative's pricing strategy. Only 17.4% see a direct relationship. Daft and Armstrong (2024) noted that competitive pricing strategy contributes to the long-term sustainability of agricultural cooperatives. By managing pricing to remain competitive while covering costs and generating profits, cooperatives ensure their viability.

Regarding organizational emphasis on vigorous pursuit of cost minimization for competitive sourcing of raw materials, 62.1% of respondents do not perceive this emphasis. This implies opportunities for cooperatives to reevaluate their approach to sourcing raw materials more competitively. The average mean of 2.36 with a standard deviation of 1.15 indicated that most respondents disagreed with the survey questions. Liu *et al.* (2022) explored competitive pricing strategies in e-commerce platforms. Their study analyzed transaction data from 1,500 sellers on a major Chinese e-commerce platform over 12 months and found that sellers employing dynamic competitive pricing algorithms achieved 28% higher sales growth compared to those using fixed pricing.

Open-ended responses revealed that competitive pricing strategy plays a significant role in shaping agricultural cooperative performance. Respondents highlighted that competitive pricing enables cooperatives to remain attractive to customers, leading to increased sales and revenue. Additionally, it fosters cost-efficiency by optimizing resource utilization and reducing operational expenses. Respondents emphasized that well-executed competitive pricing strategy contributes to product quality improvement, which enhances the cooperative's reputation and competitiveness. Moreover, it drives collaboration within the industry, as cooperatives seek partnerships to maintain competitiveness. Overall, competitive pricing is viewed as a cornerstone of performance in agricultural cooperatives in Kenya. The study highlighted that competitive pricing can stimulate collaboration within the agricultural sector through shared resources, knowledge transfer, and

increased market access, ultimately benefiting cooperative performance and contributing to long-term sustainability.

Performance

The study collected both primary and secondary data to analyze the performance of the firms, focusing on variables such as profitability, market share, and growth. Secondary data was specifically utilized to ascertain the firms' profitability, measured in terms of net profits and their growth, evaluated through the expansion metric of the number of branches opened. The questionnaires were used to collect data on market share. The gathered data, both primary and secondary, provided a holistic view of the firms' performance, which is meticulously summarized in Table 2 and Figure 2.

Table 2: Descriptive Statistics on Performance

Performance	Strongly Disagree	Disagree	Neutral	Agree	Strongly Agree	Mean	Standard deviation
The profitability of the agri-	2 iongree	21009100	1100001001	119100	118100	1,10411	we ; 1we1011
based cooperative has been							
increasing over the years.	20.30%	52.40%	4.30%	16.00%	6.90%	2.37	1.175
The market share of the agri-							
based cooperative has been							
increasing over the years.	5.20%	58.90%	12.10%	14.70%	9.10%	2.64	1.09
The growth of the agri-based							
cooperative has been increasing							
over the years.	28.10%	45.50%	9.10%	9.50%	7.80%	2.23	1.19
Operational efficiency in the							
agri-based cooperative has	24.2007	40.400/	0.200/	10 100/	C 100/	2.26	1 14
improved over the years.	24.20%	49.40%	8.20%	12.10%	6.10%	2.26	1.14
The customer base for the agri-							
based cooperative has expanded	29.00%	52.80%	2.60%	10.00%	5.60%	2.10	1.1
annually.	29.00%	32.80%	2.0070	10.0070	3.00%	2.10	1.1
Diversification of products and services has been promoted to							
contribute to the cooperative's							
growth over the years.	26.40%	41.10%	4.80%	25.10%	2.60%	2.04	1.19
Investment in technology has	20.4070	71.10/0	4.0070	23.1070	2.0070	2.04	1.17
been introduced in the							
organization to boost the							
cooperative's profitability	19.90%	49.40%	7.40%	18.60%	4.80%	2.06	1.14
Average						2.24	1.15

Regarding whether agri-based cooperative profitability has increased over the years, a significant 72.70% of respondents either disagree or strongly disagree that profitability has increased over time. Only 22.90% agreed or strongly agreed with the statement, while 4.30% remained neutral. The majority of respondents do not believe profitability has increased. The mean score of 2.37 and

standard deviation of 1.175 indicate low agreement with some variation in opinions. Li and Hu (2021) stated that transformation and upgrading policies for processing trade reduce enterprise innovation and profitability levels, but enterprise innovation and profitability can increase enterprise productivity.

Concerning whether agri-based cooperative market share has grown over time, a large majority of respondents (64.10%) disagreed or strongly disagreed that market share has been increasing. Furthermore, 12.10% were undecided, while 23.80% agreed or strongly agreed with the statement. This implies that most respondents do not see market share increases. The mean score of 2.64 and standard deviation of 1.09 indicate relatively high disagreement against market share increases. Grobman *et al.* (2020) established that innovativeness comprises commitment and technological capacity to engage in risky behavior and rapidly incorporate change in business practices through creating and adopting new ideas that facilitate innovation and deliver superior competitive advantage and large market share.

Regarding cooperative growth increases over the years, a large proportion of respondents (73.60%) disagreed or strongly disagreed that cooperative growth has been increasing. Additionally, 9.10% were neutral, while 17.30% agreed or strongly agreed with the statement. This suggests that a sizable proportion of respondents do not expect cooperative growth to accelerate. The mean score of 2.23 and standard deviation of 1.19 indicate some disagreement. Alabi, David, and Aderinto (2019) agreed that bureaucracy, unstable policy climate, unfriendly customs and trade regulations, tight monetary and credit policies, corruption, excessive tax regimes, and workforce regulations negatively affected business growth and competitive advantage in Ghana.

Concerning operational efficiency improvements in agri-based cooperatives over time, a significant 73.60% of respondents disagreed or strongly disagreed that operational efficiency had improved. Furthermore, 8.20% were undecided, while 18.20% agreed or strongly agreed with the statement. This implies that most respondents do not believe operational efficiency has improved. The mean score of 2.26 and standard deviation of 1.14 indicate low agreement with some variation in opinions. Mutea, Rist, and Jacobi (2020) agreed with results showing that collaboration provides collective experience and expertise enabling organizations to navigate obstacles more adeptly, thereby enhancing performance metrics like problem-solving speed, operational efficiency, and member satisfaction.

Regarding annual customer base growth for agri-based cooperatives, a sizable majority of respondents (81.80%) disagreed or strongly disagreed that the customer base has grown annually. Furthermore, 2.60% were undecided, while 15.60% agreed or strongly agreed with the statement. This suggests that most respondents do not see annual customer base growth. A mean of 2.10 and standard deviation of 1.1 indicate moderate agreement levels. Sefeedpari *et al.* (2020) showed that financial indicators include sales revenue and profits while non-financial performance indicators include market share, growth, production, number of branches, customer base, and employee retention.

Concerning product and service diversification promotion to contribute to cooperative growth over the years, a sizable proportion of respondents (67.50%) disagreed or strongly disagreed that product and service diversification has contributed to cooperative growth. Additionally, 4.80% were neutral, while 27.70% agreed or strongly agreed with the statement. This indicates that while a sizable proportion supports diversification, significant disagreement exists. The mean score of 2.04 and standard deviation of 1.19 indicate some disagreement. Hawke (2021) stated that structure can negatively influence performance where organizational operations are not effectively aligned with performance goals.

Regarding technological investments made to increase cooperative profitability, a significant 69.30% of respondents disagreed or strongly disagreed that technological investment has increased profitability. Furthermore, 7.40% were undecided, while 23.40% agreed or strongly agreed with the statement. This suggests that most respondents do not see technology investment as a significant profitability driver. The mean score of 2.06 and standard deviation of 1.14 indicate low agreement with some variation in opinions. Study results concur with Yifu and Shen (2018) who emphasized China's growth through technological innovation.

In summary, the findings indicate that respondents perceive challenges in various aspects of agribased cooperative performance. Notably, skepticism exists about rising profitability, market share, growth, and operational efficiency. However, some agreement exists on the importance of expanding customer base and promoting diversification as growth drivers. Technology investment is viewed skeptically as a profitability driver. Furthermore, the study gathered secondary data to determine the firms' profitability (Net profits) and growth (number of branches opened), and the results are shown in Figure 2.

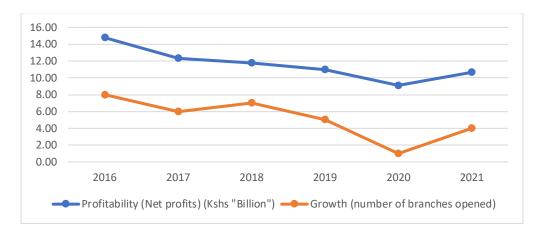


Figure 2: Firms' Net profits and growth

The data in Figure 2 provides valuable insights into the firms' financial performance and growth over a six-year period. Analyzing this data allows us to reach important conclusions and implications for agricultural cooperatives. For starters, the trend in net profits is an important indicator of these cooperatives' financial health. From 2016 to 2020, net profits fell from Kshs14.78 billion to Kshs9.10 billion according to the data. This decline could be attributed to a variety of factors, including changes in market conditions, increased competition, or internal cooperative challenges. The implications of this trend are significant because it suggests that cooperatives were experiencing financial difficulties during this time period, which may have hampered their ability to invest in growth initiatives or fund strategic projects.

However, net profits rebound to Kshs10.65 billion in 2021, indicating a positive turnaround. This improvement suggests that the cooperatives may have put in place effective strategies to address the issues they were facing. It could also reflect a general economic recovery, resulting in increased consumer demand and profitability. The implication is that because cooperatives were able to reverse the downward trend in profitability, they have the potential for resilience and adaptability.

In terms of expansion, the number of cooperative branches opened has varied over time. They opened eight new branches in 2016, indicating an expansion strategy. However, this number fell to 6 in 2017, indicating a possible slowdown in growth initiatives. The number of new branches fluctuated in the following years, with only one branch opening in 2020. This decrease in branch openings could be attributed to the challenging financial environment that existed at the time. Overall, the data in Figure 2 highlight the dynamic nature of the performance and growth of agribased cooperatives. It emphasizes the significance of sound strategic decision-making and

adaptability in the face of changing market conditions. The positive trend in 2021 suggests that, with the right strategies, these cooperatives have the potential to thrive and continue their mission of assisting Kenyan agricultural communities.

Correlation Analysis

Correlation analysis examines the association between independent and dependent variables. The correlation results are summarized in Table 3.

Table 3: Pearson Correlation Matrix between Competitive Pricing Strategy and Cooperative Performance

Variables	Performance	Competitive Pricing Strategy
Performance		
Pearson Correlation (r)	1.000	
Significance (2-tailed)	0.000	
N	129	
Competitive Pricing Strategy		
Pearson Correlation (r)	.766**	1.000
Significance (2-tailed)	0.000	
N	129	

Correlation is significant at the 0.05 level (2-tailed).

The study found that competitive pricing strategy exhibits a strong positive correlation with performance (r=0.766, p=0.000), indicating that competitive pricing strategy is a strong predictor of cooperative performance. This correlation demonstrates that cooperatives implementing effective cost minimization, efficient sourcing, and production optimization tend to achieve better performance outcomes across multiple dimensions including profitability, market share, and growth indicators. The significant correlation coefficient validates competitive pricing strategy as an important factor associated with cooperative success in Kenya's agricultural sector.

Regression Analysis

The objective of the study was to investigate the effect of competitive pricing strategy on the performance of agri-based cooperatives in Kenya. Simple regression analysis was conducted to assess the relationship between competitive pricing strategy and cooperative performance, focusing on model fitness, analysis of variance (ANOVA), and regression coefficients. Simple regression was chosen as appropriate for this study since it examines the relationship between one

independent variable (competitive pricing strategy) and one dependent variable (performance), allowing for clear assessment of the direct effect without confounding influences from multiple predictors. Table 4 presents the model fitness of competitive pricing strategy.

Table 4: Model Fitness of Competitive pricing strategy

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.766a	0.386	0.383	.0276a

a Predictor: (Constant), Competitive pricing strategy

The results in Table 4 show that competitive pricing strategy has substantial explanatory power for the performance of agri-based cooperatives. The R-square value of 0.386 indicates that 38.6% of the variation in cooperative performance can be explained by competitive pricing strategy. The adjusted R-square value of 0.383 suggests that the model's explanatory power remains relatively stable even after accounting for the number of predictors. When cooperatives implement cost leadership approaches, value-based pricing mechanisms, and production optimization strategies, these pricing-related activities account for nearly two-fifths of the performance differences observed among cooperatives. Prior to conducting the regression analysis, comprehensive diagnostic tests confirmed that all classical linear regression assumptions were met, including linearity (verified through scatter plot analysis), normality of residuals (confirmed via Kolmogorov-Smirnov and Shapiro-Wilk tests with p-values >0.05), absence of multicollinearity (VIF values <10), and homoscedasticity (Breusch-Pagan test), ensuring the validity and reliability of the statistical results. The Analysis of Variance (ANOVA) results are presented in Table 5.

Table 5: Analysis of Variance (ANOVA) of Competitive pricing strategy

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8.462	1	8.462	179.785	.000b
	Residual	5.977	127	0.047		
	Total	14.439	128			

a Dependent Variable: Performance

b Predictors: (Constant), Competitive pricing strategy

The ANOVA results in Table 5 confirm the statistical significance of the relationship between competitive pricing strategy and cooperative performance. The ANOVA test assesses whether the regression model as a whole is statistically significant by comparing the explained variance

(regression sum of squares) to the unexplained variance (residual sum of squares). The F-value of 179.785 with 1 degree of freedom for regression and 127 degrees of freedom for residuals, along with the corresponding p-value of 0.000, indicate that the model is statistically significant at the 0.001 level. This suggests that competitive pricing strategy has a significant impact on the performance of agri-based cooperatives in Kenya, with the regression model explaining significantly more variance than would be expected by chance alone.

Table 6: Regression Coefficients of Competitive pricing strategy

Model		Unstandardized Coefficients		Standardized Coefficients	T	Sig.
		В	Std. Error	Beta		
1	(Constant) Competitive pricing	0.496	0.136		3.640	0.000
	strategy	0.700	0.052	0.766	13.408	0.000

a Dependent Variable: Performance

The study results indicate that competitive pricing strategy is positively and significantly related to the performance of agri-based cooperatives in Kenya (β=0.700, p=0.000). This implies that a one-unit increase in competitive pricing strategy leads to a 0.700-unit increase in cooperative performance, holding other factors constant. The study rejects the null hypothesis since the p-value is less than 0.05. Hence, competitive pricing strategy has a significant effect on performance of agri-based cooperatives in Kenya. These findings are corroborated by empirical studies that demonstrate the critical relationship between pricing strategy and organizational performance. Daft and Armstrong (2024) found that competitive pricing fosters cost-efficiency within agricultural cooperatives, with cooperatives that strategically manage their pricing being able to optimize resource utilization, reduce wastage, and lower operational expenses, leading to costeffectiveness that directly contributes to higher profit margins and positively impacts financial performance of cooperatives. Cram et al. (2019) examined competitive pricing strategies in retail sector and found that firms implementing dynamic pricing strategies achieved 22% higher profit margins compared to those using static pricing approaches, while Homburg et al. (2023) found that firms implementing pricing solutions experienced 24% increase in price realization and 17% improvement in customer retention rates.

CONCLUSION

The study concludes that there is a significant positive relationship between competitive pricing strategy and the performance of agri-based cooperatives in Kenya. Based on the rejection of the null hypothesis that competitive pricing strategy does not have a significant effect on performance of agri-based cooperatives in Kenya, the research established that competitive pricing strategy significantly influences cooperative performance. The statistical analysis demonstrated that competitive pricing strategy explains 38.6% of the variance in cooperative performance with a strong positive correlation (r = 0.766, p = 0.000). The regression analysis confirmed that a one-unit increase in competitive pricing strategy leads to a 0.700-unit increase in cooperative performance, holding other factors constant.

The research demonstrates that cooperatives employing competitive pricing mechanisms through cost minimization, efficient sourcing, and production optimization achieve significantly better performance outcomes in terms of profitability, market share, and growth indicators. The analysis reveals that strategic pricing approaches enable cooperatives to optimize resource utilization, reduce operational expenses, and maintain competitiveness while serving member interests. These findings indicate that competitive pricing strategy is a critical determinant of cooperative success in Kenya's agricultural sector, providing empirical evidence that systematic pricing optimization contributes to enhanced organizational effectiveness. The study provides practical guidance for cooperative managers seeking to improve performance through strategic pricing approaches, offering evidence-based support for the implementation of competitive pricing mechanisms as a means of achieving sustainable competitive advantage and superior market performance in agricultural cooperative operations.

RECOMMENDATIONS

Recommendations are presented as managerial recommendations and policy recommendations.

Managerial Recommendations

Managers of agri-based cooperatives in Kenya should develop and implement competitive pricing strategies to attract and retain customers while maintaining profitability. They should regularly conduct market research to understand competitor pricing, customer preferences, and market dynamics. Managers should implement dynamic pricing strategies that adapt to changes in market

conditions and customer demand while communicating the value proposition of their products and services to justify pricing and differentiate themselves from competitors. Additionally, managers should establish key performance indicators (KPIs) to monitor pricing effectiveness and invest in process automation technologies to reduce operational costs and enhance pricing accuracy.

Furthermore, managers should prioritize training and capacity-building programs to equip themselves and their teams with skills to interpret market data effectively and lead organizational change in pricing strategies. Managers should create a culture of continuous improvement by engaging members in feedback loops and innovation initiatives regarding pricing policies and market positioning. Regular performance reviews and pricing audits should be conducted to maintain alignment with cooperative objectives and identify emerging pricing opportunities in the agricultural market.

Policy Recommendations

Policymakers should create a level playing field for agri-based cooperatives in Kenya by implementing policies that promote fair competition and prevent market distortions. They should monitor and regulate market practices to ensure that cooperatives can compete based on quality and value of their products and services rather than engaging in predatory pricing or anti-competitive behaviors. Policymakers should provide market information and intelligence to help cooperatives make informed pricing decisions and support the development of robust ecosystems that enable cooperatives to optimize their competitive pricing strategies.

Additionally, policymakers should establish cooperative support hubs that offer technical assistance, digital tools, and strategic advisory services for pricing optimization. Digital platforms for cooperative data management and market access should be developed to enhance pricing capabilities and market connectivity. Incentives and grants should be provided for cooperatives adopting innovative pricing strategies and technologies. These initiatives align with Kenya's Vision 2030 objectives of transforming the country into a modern, industrialized middle-income nation and contribute to achieving Sustainable Development Goals, particularly SDG 1 (No Poverty), SDG 2 (Zero Hunger), SDG 8 (Decent Work and Economic Growth), and SDG 17 (Partnerships for the Goals). Financial support mechanisms should be created to enable cooperatives to access affordable pricing technologies and training resources, while regulatory frameworks should support cooperative pricing modernization while maintaining democratic principles and member-focused objectives.

REFERENCES

- Ambrosini, V., & Bowman, C. (2009). What are dynamic capabilities and are they a useful construct in strategic management? *International Journal of Management Reviews*, 11(1), 29-49.
- Bradley, S. P. (2002). Net-enablement and competitive advantage. Harvard Business School Press.
- Cooper, D. R., & Schindler, P. S. (2014). Business research methods: Data preparation and description. McGraw-Hill Irwin.
- Cram, W. A., Fosso Wamba, S., & Bourke, P. (2019). Dynamic pricing strategies and customer analytics: Impact on retail performance. *International Journal of Retail & Distribution Management*, 47(12), 1312-1328.
- Daft, R. L., & Armstrong, A. (2024). *Organization theory and design: Sustainability perspectives*. Cengage Learning.
- Echaaobari, S. G., Adim, C. V., & Ihunda, C. C. (2018). Collaboration strategy and employee performance in oil producing companies in Port Harcourt, Nigeria. *International Journal of Social Sciences and Management Research*, 4(3), 21-30.
- Ferguson, B. (2020). Competing for influence. ANU Press.
- Getachew, A. M. (2019). Strategic use of branding for competitiveness: The rationale for branding and marketing agricultural products of African countries. *Journal of Fair Trade*, 1(2), 6-13.
- Hood, C., James, O., Jones, G., Scott, C., & Travers, T. (1993). *Rolling back the state: Thatcherism, fragmentation and decentralisation*. Political Quarterly, 64(2), 14-27.
- Gu, Q., Qi, W., & Wang, H. (2018). Business process strategy aims to inform the management with strategies to be adopted and enabling other departments to understand the goals of the company that needs to be achieved. *Journal of Business Strategy*, 4(2), 15-28.
- Guandaru, A. W. (2019). Strategies deployed by Fly 540 Aviation Company to sustain competitive advantage [Doctoral dissertation, University of Nairobi].
- Homburg, C., Wielgos, D. M., & Kühnl, C. (2023). AI-powered pricing in B2B markets: Impact on firm performance and implementation challenges. *Industrial Marketing Management*, 108, 294-310.
- Imran, M., Hamid, S., & Aziz, A. (2018). The influence of TQM on export performance of SMEs: Empirical evidence from manufacturing sector in Pakistan using PLS-SEM. *Management Science Letters*, 8(5), 243-496.
- Kang, S., & Jeong, H. Y. (2019). The effect of market orientation on performance of sharing economy business: Focusing on marketing innovation and sustainable competitive advantage. *Sustainability*, 11(3), 729.
- Kavulya, P. W., Muturi, W., Rotich, G., & Ogollah, K. (2018). Effect of customer focus strategy on the performance of SACCOs in Kenya. *International Journal of Business Strategies*, 3(1), 1-16.

- Kavulya, P. W., Muturi, W., Rotich, G., & Ogollah, K. (2018). Effect of customer focus strategy on the performance of SACCOs in Kenya. *International Journal of Business Strategies*, 3(1), 1-16.
- Kenya National Chamber of Commerce and Industry. (2022). *Annual business survey report: Impact of economic challenges on cooperative performance*.
- Kienzler, M., & Kowalkowski, C. (2021). Pricing strategy and firm performance: A meta-analysis of empirical studies. *Journal of Business Research*, 128, 264-277.
- Kothari, C. R. (2013). Research methodology: Methods and techniques. New Age International Publishers.
- Laite, K. (2018). Firm core business processes and the effect on performance. *Journal of Business Management*, 4(3), 61-69.
- Ma, L. (2023). Recent developments and future directions of administrative service reform in China. In A. Podger, H. S. Chan, T.-T. Su, & J. Wanna (Eds.), *Dilemmas in public management in Greater China and Australia: Rising tensions but common challenges* (1st ed., pp. 407-428). ANU Press.
- Masika, D., & Simiyu, E. (2019). Effect of firm characteristics on financial performance of deposit taking SACCOs licensed by SASRA in Nairobi, Kenya. *African Journal of Emerging Issues*, 1(4), 24-73.
- Masika, D., & Simiyu, E. (2019). Effect of firm characteristics on financial performance of deposit taking SACCOs licensed by SASRA in Nairobi, Kenya. *African Journal of Emerging Issues*, 1(4), 24-73.
- McNichols, M. F., & Stubben, S. R. (2018). Research design issues in studies using discretionary accruals. *Abacus*, 54(2), 227-246.
- Noam, A. (2021). Price measurement challenges and poverty calculations in developing countries. *Development Economics Review*, 15(3), 45-62.
- SASRA. (2022). Licensed SACCO societies for period ending 31st December, 2021.
- Schijvenaars, G., Hoogstrate, A. J., van Kampen, T., de Gooijer, G., & van Fenema, P. C. (2023). Information- and data-driven organisations from promise to practice?: Reflecting on maturity dynamics in a defence sustainment organisation. In P. B. M. J. Pijpers, M. Voskuijl, & R. J. M. Beeres (Eds.), *Towards a data-driven military: A multidisciplinary perspective* (pp. 121--142). Leiden University Press.
- Teece, D. J. (1990). Contributions and impediments of economic organization to technology commercialization. In *Technology and investment* (pp. 133-155). MIT Press.
- Teece, D. J., Pisano, G., & Shuen, A. (2010). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533.
- Zhang, L., & Chen, Y. (2023). AI-driven pricing strategies in platform ecosystems: Impact on seller performance and customer value. *Management Science*, 69(5), 2789-2810.