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ABSTRACT

Purpose of the Study: The study examined factors influencing the adoption, intensity of use, and yield
effects of fall armyworm (FAW) mitigation strategies among maize farmers in Burundi.

Statement of the Problem: Fall armyworm poses a serious threat to maize production and food security
in Burundi, yet limited evidence exists on what drives farmers’ adoption of control measures and their
impact on yields.

Methodology: Data from 536 maize farmers in five provinces of the Imbo plain were analyzed using
the Double Hurdle model to assess adoption and intensity of use, and Propensity Score Matching to
estimate yield impacts.

Findings: About 68% of farmers adopted FAW mitigation methods, predominantly chemical control.
Adoption and intensity were positively influenced by socio-economic factors, information access,
credit, and extension services. Adopters achieved significantly higher maize yields than non-adopters.
Conclusion: FAW mitigation strategies improve maize yields, but adoption is heavily skewed toward
chemical methods, indicating limited uptake of integrated pest management practices.
Recommendations: The study recommends strengthening extension services, promoting Integrated
Pest Management training, improving access to credit, and enhancing rural infrastructure to support
sustainable FAW control.

Keywords: Farmers’ Adoption, Fall armyworm, Mitigation technologies, Maize yield, Burundi.
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INTRODUCTION

The fall armyworm (Spodoptera frugiperda J.E. Smith) is a major threat to maize production
and food security in Sub-Saharan Africa (Kumela et al., 2019), causing substantial yield losses
across the region. Reported infestation rates reach 32% in Ethiopia and 47.3% in Kenya
(Kumela et al., 2019), with yield losses ranging from 11.57-16.39% in Zimbabwe (Harrison et
al., 2022) and 26-40% in Ghana and 35-50% in Zambia (Tambo et al., 2021). Such losses,
which can exceed 2 tonnes per hectare, exacerbate food insecurity and economic vulnerability
(Akudugu et al., 2012; Thakur et al., 2018; Prospects et al., 2021), though effective control

strategies can mitigate these impacts (Ullah et al., 2020).

In Burundi, FAW control efforts have focused on promoting pest management technologies
through extension services, emphasizing Integrated Pest Management approaches that combine
agronomic, botanical, biological, and chemical methods (Kassam et al., 2020). Additional
interventions include mobile-based early warning systems (Bashir et al., 2021), community
awareness programs via radio and print media (Mugisha et al., 2022), and research-led field

trials of Bt maize (Ndayizeye et al., 2019).

Yet the success of these efforts depends on farmers adopting the recommended technologies
(ASEAN, 2020; Tambo et al., 2020). A study in Tanzania by Kassam et al. (2021) highlighted
the influence of demographic, institutional, and socioeconomic factors on the adoption of
conservation agriculture practices (Fatoretto et al., 2017; Thakur et al., 2018). Similar
constraints to adoption have been noted elsewhere (Akudugu et al., 2012; Misango et al., 2022).
Evidence from neighboring countries showed that adopting fall armyworm control
technologies can increase maize yields by 21-52% (Akudugu et al., 2012; Thakur et al., 2018).
Despite these insights, no systematic study in Burundi has assessed which socioeconomic
factors drive adoption, the intensity of use, or the actual yield impacts. This study addressed
these gaps by analyzing factors influencing farmers’ decisions to adopt, the intensity of use,
and the effects of this adoption on maize yields. The findings identify strategies to scale up
effective technologies to reduce crop losses and boost productivity, while providing
policymakers, development agencies, and agricultural stakeholders with valuable evidence to

improve fall armyworm control in Burundi.

Theoretical Framework
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This study is grounded in rational choice theory, which views farmers as decision-makers who
adopt fall armyworm mitigation technologies (FAWMT) after weighing expected benefits,
such as higher maize yields and improved food security, against associated costs and risks.
Although the theory assumes perfect information, farmers often face uncertainty, resource
constraints, and institutional influences that shape their decisions. Nevertheless, rational choice
theory remains useful for analyzing agricultural technology adoption, as farmers tend to adopt
innovations when they offer clear advantages over existing practices (Feder et al., 1985; Jensen,
1982).

In this study, adoption is examined through both the decision to adopt FAWMT and the
intensity of use. In Burundi, where fall armyworm (Spodoptera frugiperda) poses a significant
threat to maize production, anticipated yield gains make FAWMT adoption crucial for food
security (Akudugu et al., 2012; Thakur et al., 2018). Previous studies show that awareness,
socio-demographic factors, economic conditions, and institutional support significantly

influence adoption among smallholder farmers.

MATERIALS AND METHODS

The study was conducted in the Imbo Plain agroecological zone of Burundi, covering the
provinces of Cibitoke, Bubanza, Bujumbura, Rumonge, and Makamba. This densely populated
region is agriculturally significant due to its fertile alluvial soils and maize-based farming
systems. Its lowland topography, warm temperatures, and relatively low rainfall create
favorable conditions for the proliferation of fall armyworms, making the area highly vulnerable

to infestations.

A cross-sectional survey of 536 maize-farming households was conducted using stratified
random sampling across the five provinces. Data were collected through a semi-structured
questionnaire administered electronically by trained enumerators and analyzed using
descriptive statistics and econometric models. Adoption and intensity of use of fall armyworm
mitigation technologies were examined using a double hurdle model, while Propensity Score
Matching was applied to estimate the impact of adoption on maize yields, controlling for

selection bias.
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RESULTS

Socio-demographic characteristics of adopters and non-adopter farmers

The results showed that male-headed households predominated in both regions, especially in
the West (75% vs. 65% in the South), with a similar trend among adopters of fall armyworm
(FAW) mitigation technologies (80% in the West, 70% in the South; p<0.01). Most
respondents were married, with higher rates in the West (70%) than the South (50%), and
among adopters (75% vs. 65%; p<0.05). Secure land tenure was common, particularly in the
West (85% vs. 75%), and was even higher among adopters (90% in the West, 80% in the South;
p<0.01). Group membership was prevalent (78% overall), significantly higher in the West
(90%) than in the South (65%; p<0.01), emphasizing the role of collective learning.

Access to extension services and markets was greater in the West than the South, with 75% vs.
55% and 70% vs. 40%, respectively, and among adopters, 80% in the West had extension
access compared to 70% in the South (p<0.05). Agricultural credit access was low overall (6%),
with no significant regional difference (p>0.05). The mean age of household heads was similar
between adopters and non-adopters (46.50 vs. 45.29 years; p=0.1526), suggesting age did not
significantly influence adoption. These results highlight that gender, marital status, land tenure,
group membership, and access to extension and markets are key factors associated with FAW

mitigation adoption, particularly in the western region.
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Table 1: Characteristics of adopters and non-adopters

Households’ Pooled region Test | Western Region® Test | Southern Region’ Test
characteristi ! !
cs N: Non Adopter N=306 | Non Adopt N=230 | Non Adopt
536(1 | adopter =365(68) (57.09) | adopter = (42.91) | adopter | =
00)’ =171(32 ! ! =101(33 | 205(6 ! =70(30) | 160(70
)! )! 7' 1 )
Gender  of 72.7 31.0 45.2
HH *kk *kk *kk
male 442(8 106(24) 336(76) 246(80 63(25) 183(7 196(85 43(22) 153(78
2) ) 4) ) )
Female 94(19 65(67) 29(31) 60(20) 38(63) 22(36) 34(40) 27(79) 7(21)
)
Marital 0.8 32 2.42
status
Single 52(10 15(09) 37(10) 31(10) 9(30) 22(70) 2109) 6(29) 15(71)
)
Married 228(4 76(48) 152(46) 133(43 51(38) 82(62) 95(41) 25(26) 70(74)
2) )
Separated 1142 36(21) 78(21) 72(24) 22(31) 50(69) 42(18) 14(33) 28(67)
D
Widow/Wido 85(16 28(16) 57(15) 44(14) 12(27) 32(73) 41(18) 16(39) 25(61)
wer )
Divorced 57(11 16(28) 41(11) 26(8) 7(27) 19(73) 31(13) 9(30) 22(70)
)
Land tenure 112. 61.6 53.0
7** s L
*
No 147(2 98(67) 49(71) 90(29) 57(63) 33(37) 57(25) 41(72) 16(28)
7)
Yes 389(7 73(19) 316(81) 21697 44(20) 172(8 173(75 29(17) 144(83
3) D 0) ) )
Group 102. 58.3 44.6
membership A ke L
*
No 143(2 94(66) 49(34) 94(31) 60(64) 34(36) 49(21) 34(69) 15(31)
7)
Yes 393(7 77(20) 316(80) 212(29 41(19) 171(8 181(79 36(20) 145(80
3) ) D ) )
Extension 111. 210. 0.2
services T 2%*
access * *
No 157(3 102(64) 55(35) 86(28) 82(95) 4(5) 71(31) 20(28) 51(72)
0)
Yes 379(7 69(180 310(81) 220(72 1909) 201(9 159(69 50(31) 109(69
0) ) D ) )
Access to 137. 71.0 67.2
Credit s** fekk b
*
No 342(6 170(49) 172(50) 208(68 101(49) 107(5 134(58 69(51) 65(49)
4) ) D )
Yes 194(3 1 193( 98(32) 0(0) 98(32) 96(42) 1(1) 95(99)
6)
Market 0.7 0.7 0.12
access
No 309(5 103(33) 206(67) 165(54 58(35) 107(6 144(63 45(31) 99(69)
8) ) 5) )
Yes 227(4 68(30) 159(70) 141(46 43(30) 98(70) 86(37) 25(29) 61(71)
2) )
Age of HH | 46.1 45.2(9.8) | 46.5(8.7) | -1.4 | 45.9(8. | 45.1(9.5) | 46.4(8 | -1.3 | 46.3(9. | 45.6(10. | 46.6(9. -0.7
(yrs) 9.1) 8) 4) 5) 1) 2)
Size of HH 6.0(1. | 4.9(1.1) 6.5(1.4) - 5.1 5.17(1.1) 6.6( - 5.8(1.6 | 4.6(1.1) | 6.4(1.5 -
5) 12.4 1.4) 8.8% ) ) 9.1*
KKk *% *%
Land of | .3(.03 .3(.05) .3(0.031) | -0.9 | 0.3(.03 0.24( 0.36(. - .25(.04 | 0.28(.07 | 0.24(.0 | 0.55
HH(Hectare) ) ) .05) 04) 1.57 ) ) 4)
Training  of | .43(.2 | 0.48(.05) | 0.42(.02) | 0.9 | 0.40(.0 | 0.36(.07) | 0.41(. - 0.46(.0 | 0.61(.08 | 0.43(.0 1.96
FWA ) 3) 03) 0.52 3) ) 4) ol
Distance to | 3.03( | 4.17(.57) | 2.49(.74) | 26.3 | 3(1.0) 4.1(.5) 2.5(.6 | 21.1 | 3.1(1.0 4.2(.5) 2.55( 16.3
extension 1.04) ok 9) 7 .7 el
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services
(hours)

Frequence of | 3.95( | 2.52(.67) | 4.63(90) | - | 449(1. | 3(0) 523 | - | 324(1. | 1.8(54) | 3.8(39 | 323
extension 1.29) 27.1 2) 73) | 304 | 04 )

services oAk el
Farming 21.46 | 9.49(5.0 | 27.15(12. - 20.7(1 9.0944 | 26.4(1 - 22.50( | 10.07(5. | 28.08( -
experiences( (13.5) 4) 5) 17.7 3.8) 8) 3.3) 12.6 | 13.02) 7) 11.41) 12.5
Yrs) dkksk kksk kkok
Maize yield | 305.7 | 231.6(48 | 340.49(6 - 300.26 | 227.22(4 | 336.24 - 313.1( | 238(51. | 345(60 -
2021(Kg) 6(80. .26) 8.63) 18.6 | (83.8) 5.7) (7441 | 13.5 | 76.17) 4) .3) 13.0
Maize yield | 406.1 | 310.7(52 450.9( - 410.6( | 319.2(49 | 455.7( - 400.2( | 298.4(5 | 444(70 -
2022(Kg) 9(90. 2) 67.3) 24% 87.9) .9) 64.4) 18.6 94.2) 3.4) ) 154
7) kk dkksk dkksk

! N(%) for categorical variables, used chi-square and mean (SD for continuous variables using t-test

’Note: The Southern Burundi region includes Makamba and Rumonge provinces, and the Western Burundi region
includes Bujumbura rural, Bubanza, and Cibitoke. _Signification*** p<0.01, ** p<0.05, * p<0.1.

Table 2 presents the distribution of Fall Armyworm Mitigation Technologies (FAWMTS)
across five provinces in Burundi. It showed that 68% of small-scale farmers adopted at least
one FAWMT, with 99% relying on chemical methods. Usage of botanical, biological, and
agronomical techniques was minimal at 0.08%, 0.02%, and 0.01%, respectively. Farmers
employed seven chemical methods to control maize fall armyworm, with Dudu Fenos being
the most popular at 35.63%. Decis was the least used (1.31%), followed by Emacot (1.87%)
and Imidacloprid (2.8%). In Bujumbura province, 32.52% of farmers adopted Dudu Fenos,
while only 1.63% used Imidacloprid. Orthene (17.07%) and Rocket (15.45%) were also
popular, with Dusurban at 6.5%.

In Bubanza province, 45.79% adopted Dudu Fenos, and 34.58% used Rocket. Decis had no
adopters, while Emacot had only one (0.93%). In Cibitoke, Dudu Fenos had a 38.46% adoption
rate, with no adoption of Imidacloprid. Orthene and Rocket were utilized by 21.79% and
10.26%, respectively. In Makamba, Orthene led at 36.05%, followed by Dudu Fenos (32.56%).
Decis had the lowest adoption (2.33%). In Rumonge, Dudu Fenos, Rocket, and Orthene were
most adopted, while Emacot had very few users (1.14%). Overall, chemical methods dominate

FAWMT usage among farmers in Burundi, showing notable regional variations.
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Table 2: Control Measures for Mitigation of FAW

Provinces
Overall Western Region Southern Region P-
Valu
Bujumbura, Bubanza, Cibitoke, Makamba, Rumonge, &2
N=536’ N=123' N=107" N=78' N=86' N=142'
Adop | Non- Ado Non- Ado Non- Ado Non- | Adop | Non- | Ado Non-
ter Adop | pter Adopter | pter Adopter | pter Ado ter Ado pter Adop
ter pter pter ter
Chemica 0.002
1
Decis 7(1.3) | 5299 | 2(1.6 | 121(98.3 | 0(0) | 107(100) | 0(0) 78(1 | 2(1.3) | 849 | 3(2.1 | 13909
8.6) ) ) 00) 7.6) ) 7.8)
191(3 | 345(6 | 403 83(67.4) | 49(4 | 58(54.2) | 30(3 48(6 | 28(32 | 58(6 | 44(3 | 98(69
DuduFe 5.6) 4.3) 2.5) 5.7) 8.4) 1.5) .5) 7.4) 0.9) .0)
nos
Dursban | 36(6. | 5009 | 8(6.5 | 115(93.5 | 10(9. | 97(90.6) | 4(5.1 7409 | 5(5.8) | 81(9 | 9(6.3 | 13309
7) 3.2) ) ) 3) ) 4.7) 4.1) ) 3.6)
Emacot 10(1. | 526(9 | 2(1.6 | 121(98.3 | 1(0.9 | 106(99.1 | 1(1.3 | 77(9 | 4(4.6) | 82(9 | 2(1.4 | 14009
8) 8.3) ) ) ) ) ) 8.7) 5.3) ) 8.6)
Imidaclo | 15(2. | 5219 | 2(1.6 | 121(98.3 | 3(2.8 | 104(97.2 | 2(2.5 | 76(9 | 5(5.8) | 81(9 | 3(2.1 | 13909
rprid 8) 7.2) ) ) ) ) ) 7.4) 4.1) ) 7.8)
Orthene 105(1 | 431(8 | 21(1 102(82.9 | 8(7.4 | 99(92.5) 17(2 61(7 | 3136 | 55(6 28(1 114(8
9.5) 0.4) 7.1) ) ) 1.7) 8.2) ) 3.9) 9.7) 0.3)
Rocket 113(0. | 423(7 | 1901 104(84.5 | 37(3 | 70(65.4) | 8(10. | 70(8 12(13 | 74(8 372 | 105(7
2) 8.9) 5.4) ) 4.5) 2) 9.7) 9) 6) 6.1) 3.9)
Botanica | 31(5. | 50509 | 4(3.2 | 119(96.7 | 5(4.7 | 102(95.3 | 6(7.7 | 72(9 10(11 76(8 | 6(4.2 | 136(9 0.3
1 8) 4.2) ) ) ) ) ) 2.3) .62) 8.4) ) 5.8)
Biologic 142. | 52209 | 1(0.8 | 122(99.2 | 1(0.9 | 106(99.1 | 4(5.1 7409 | 2(2.3) | 849 | 6(42 | 136(9 0.2
al 6) 7.2) ) ) ) ) ) 4.7) 7.6) ) 5.8)
Agrono 9(1.7) | 52798 | 1(0.8 | 122(99.2 | 3(2.8 | 104(97.2 | 0(0) 78(1 | 3(3.5) | 8309 | 2(1.4 | 14009 0.5
mical 3) ) ) ) 00) 6.5) ) 8.6)
n(%)
’Pearson's Chi-squared test; Fisher's exact test

Factors influencing the decision to adopt FAWMT and the Intensity of the adoption of
FAWMT

A double hurdle model was used to evaluate factors influencing the adoption of Fall
Armyworm Mitigation Technologies (Table 3). This combined Probit analysis for the adoption
decision and a Tobit model for the intensity of use among adopters, capturing complexities in
the adoption process and providing insights into agricultural technology dynamics. Results
identified several significant factors affecting adoption decisions. Gender was important in the
pooled sample, with female-headed households more likely to adopt FAWMT (B = 0.084, p <
0.01). In the Western region, male-headed households showed a slight preference (B = -0.031,
p < 0.05), while gender was not significant in the Southern region. Older household heads were
less likely to adopt FAWMT (B = -0.003, t = -2.98, p < 0.01). Higher school attendance
positively influenced adoption (f = 0.211, p < 0.01), especially in the Western region ( =
0.540, p <0.01). Marital status also positively affected adoption (B = 0.077, p < 0.05), notably
among married couples in the Western region (B = 0.350, p < 0.01). Household size had a

marginal positive effect (B = 0.004, p < 0.10), stronger in the Western region (B = 0.261, p <
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0.01). Land size negatively impacted adoption (B = -0.178, p < 0.05), indicating smaller
landholders faced greater barriers; this effect persisted in the Southern region (B = 0.018, p <
0.05).

Membership in farmer groups positively influenced adoption (f = 0.073, p < 0.10), with a
stronger effect in the Western region (f = 0.249, p < 0.05). Access to credit facilitated adoption
significantly (f = 0.077, p < 0.01), with effects consistent across regions but stronger in the
Western region (B = 0.091, p <0.01). Access to market information also correlated positively
(B =0.097, p <0.01), significantly in both regions. Frequent contact with extension services
promoted adoption (B =0.230, p <0.01), highlighting the importance of ongoing support (Table
3). Regarding intensity of use, older heads used FAWMT less intensively (B = -0.002, p <
0.01), while education and school attendance had strong positive effects (f = 1.846, p <0.01).
Marital status (fp = 0.103, p < 0.05) and household size (B = 0.263, p < 0.01) were positively
associated with intensity. Land size negatively affected intensity (p = -0.076, p < 0.05). Group
membership increased intensity (f = 0.247, p < 0.01). Access to credit (B = 0.791, p < 0.01)
and market information (B = 0.201, p < 0.01) significantly enhanced intensity, as did frequent

extension contact ( = 0.386, p < 0.01), reinforcing the role of financial resources and support

in technology adoption (Table 3).

Table 3: Factors affecting the Adoption decision of technology

Probit Tobit

Variables Pooled Western Southern Pooled Western Southern
sample Burundi Burundi sample Burundi Burundi
-1 -2 -3 -1 -2 -3
Marginal eff | Marginal eff | Marginal eff | Marginal eff | Marginal eff | Marginal eff
ects ects ects ects ects ects

Household head sex (1=mal | -0.084(- -0.331(- 0.001(-0.89 | -0.593(-3.26 | -0.988(-4.02 | -0.34(-1.29

e) 3.20)* 2.62)** ) )** YH¥* )

Household head age (year) 0.003(- -0.003(0.17) | 0.004(-1.53 | 0.002(-0.94 | 0(0.16 0.007(-1.23
2.98)* ) ) )

School attendance (1=attend | 0.211(4.03) | 0.549(5.82 0.581(5.76 1.846(9.04 1.776(6.83 1.851(5.44

Marital status (1=married) -0.077(- -0.351(-3.57 | 0.064( 0.36) | -0.103(-1.36 | -0.555(-3.97 | 0.409(2.45

Household size -0.004(0.85 | 0.261(5.52 0.005(1.62) | 0.632(11.08 | 0.799(9.52 0.464(6.77

Size of land under maize | 0.178(3.28 0.184(0.90) | -0.018(0.11 | -0.076(0.34 | -0.007(0.67 | 0.28(0.77)

cultivation (Hectare) )* ) ) )

Group membership (1=yes) | -0.073(- -0.249(-1.31 | 0.07(1.27) -0.247(-0.77 | -0.497(-1.44 | 0.062(0.30)
3.15)* )* ) )

Access to credit (1=yes) 0.077(- - 0.255(- 0.791(- 0.917(- 0.550(-
0.047) 0.073)*** 0.138)*** 0.208)*** 0.173)***

Access to market informatio | 0.097(2.78 0.172(1.41 0.119(3.04 0.212(2.12 0.128(0.87) | 0.367(3.06

n (1=yes) YEEE )* )* Yk YEEE

Frequency of extension cont | 0.233(5.26 - -

act Yk
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Probit Tobit
Observations 536 208 230 536 306 230

Notes. T-values in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
TheSouthern Burundi region includes Makamba and Rumonge provinces,
and Western Burundi includes Bujumbura rural, Bubanza, and Cibitoke.

Impact of the adoption of FAWMT on the maize yield of maize farmers

The impact of adopting Fall Armyworm Mitigation Technologies (FAWMT) on maize yields
in Burundi was evaluated using propensity score matching (PSM). This analysis employed
multiple matching algorithms, including Caliper Matching, Kernel Matching, and Nearest
Neighbor Matching (NNM), across various regions and years. The yields for two consecutive
years (2021 and 2022) were estimated using these four matching algorithms. The outcome
variables, maize yield in 2021 and 2022, were analyzed to determine the average treatment of
the treated (ATT), average treatment of the untreated (ATU), and the average treatment effect
(ATE) (Table 4).

The results revealed that adopters significantly increased their maize yields. Specifically, the
adoption of these technologies resulted in an average increase of 38.8 kg/h in 2021 and 90.9
kag/h in 2022 for NNM1; 33.3 kg/h in 2021 and 78.3 kg/h in 2022 for NNM5; 33.5 kg/h in 2021
and 78.3 kg/h in 2022 for Kernel-Based Matching; and 69.4 kg/h in 2021 and 101.8 kg/h in
2022 for Caliper Based Matching. The impact of the four matching algorithms was significant.
The ATT estimates based on these algorithms were robust across both years. Nearest Neighbor
Matching was considered in this study because it demonstrated the highest effect. The average
maize yield gains ranged from 29.6 kg/h to 38.8 kg/h in 2021 and from 80.9 kg/h to 105.1 kg/h
in 2022 for nearest-neighbor matching, which were significant at the 95% confidence level for
all matching algorithms used in this study. In terms of percentage increase, this translated to
16.3% in 2021 and 26.9% in 2022, leading to an overall average increase of 22.4% over the
two consecutive years (Table 4).
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Table 4: Estimated Average Treatment Effect on Treated for the impact on maize

yield
Algorith ~ NNM1 Caliper Matching
ms
Outcome variables Panel (a) Pooled sample Western Burundi Southern Burundi Pane  Pooled sample Western Burundi Southern Burundi
Maize I (@)
Household type and VYield in “ATT ATU ATE ATE ATU Maiz = ATT ATE ATT ATE ATT
treatment effect 2021 ATT ATU AT ATE € A ATU ATU ATE
T yield T
in U
Decision Adopter 276. 2336 268.  227. 288. 2431 2021 T4008 30 268. 2273 288. 243
stage 9 6 2 6 0 6 6 1
Non 238 263.3 240. 255 252. 2725 340.4 37 227. 260.2 247.  278.
adopter 8 9 0. 7 7 9
7
Difference 38.8 29.6 339 27 277 27.75 357 294 324 69.4 70 701 408 329 365 409 358 382
7
T-test 3.38 2.84 3.82 5.64 5.64 5.46
Decision Adopter 428. 3112 430.  319. 426. 299.4 428.8 31 430. 319.2 426.  299.
stage 8 2 2 8 1. 2 8 4
2
Non 337. 3836 325. 391 336. 382.6 327 40 328.  408.9 328.  388.
adopter 9 1 8 7 3. 1 8 9
2
Difference 909 724 809 105. 725 873 90.1 832 86.5 101.8 91 96.5 102. 89.7 954 979 895 935
1 5446 9 2
T-test 6.87 9.32 6.34 14.46 115 8.2
9
NNM5 Karnel
Pooled sample Western Burundi Southern Burundi Pane Western Burundi Southern Burundi
1 (a)
ATT ATU ATE ATT ATU ATE AT ATU ATE Maiz ATT A ATE ATT ATE ATT
Panel (a) T 3 T ATU ATU ATE
Maize yield U
Decision Adopter yield in  276. 233.6 268.  227. 288. 243.1 n 274 23 261. 227.2 287. 242,
stage 2021 9 6 2 7 2021 3. 4 4 3
6
Non 243. 2642 240.  254. 252. 2725 240.5 26 233. 2545 253 277.
adopter 6 8 9 9 1. 4 4
7
Difference 333 30.6 319 277 2718 2717 35.7 295 324 335 28 305 281 272 276 344 352 348
2
T-test 4.42 2.84 3.82 519 3.26 3.78
Decision Adopter 428. 3112 430.  319. 426. 299.4 414 31 414 311.2 409. 300
stage 8 2 2 8 1. 8
2
Non 340.  386.7 325. 391 336. 382.6 335.7 38 335. 3874 340.  370.
adopter 1 1 7 8 7. 7 4 7
4
Difference 88.7 754 815 105. 725 873 90.1 83.2 86.4 783 76 771 783 76.2 771 694 707 701
1 2
T-test 9.37 9.32 6.34 10.35 103 5.64
5

Table 5 presents the results of balancing tests conducted using different matching

algorithms (NNM1, NNM5, Kernel, and Caliper) across the pooled sample and specific

regions (Southern and Western Burundi) for the years 2021 and 2022. The key metrics

include Pseudo R? values, p-values, mean bias before and after matching, and the

percentage bias reduction. The Pseudo R? values indicate how well the covariates are

balanced after matching. Lower values suggest better balance. In general, the Pseudo R?2

values decreased significantly after matching for all algorithms, indicating improved

balance between treated and control groups. For instance, the pooled sample shows a
reduction from 0.114 (unmatched) to 0.053 (matched) using NNM1 in 2021. P-values

assess whether the differences in covariates between the treated and control groups are
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statistically significant. All matching methods show p-values of 0.000 for unmatched
groups, indicating significant differences in covariates before matching. After matching,
most p-values are above 0.05, suggesting that the matching process effectively reduced the

significance of differences.

The mean bias measures the average difference in covariates between the treated and
control groups. For the pooled sample in 2021, the mean bias decreased from 41.1
(unmatched) to 13.2 (matched) using NNMZ1, demonstrating a significant improvement in
matching quality. The Southern region shows a similar trend, with mean bias reducing
from 55.4 to 15.6. This metric indicates the effectiveness of the matching process in
reducing bias. The percentage bias reduction is consistently 50% across multiple
algorithms for both years in the pooled sample and regions, suggesting that the matching
methods effectively balanced covariates. All matching algorithms reduced mean bias and
improved balance, as evidenced by decreased Pseudo RZ values and statistically non-
significant p-values after matching. The Caliper and NNM methods performed effectively
in balancing covariates, with consistent results across regions and years. The significant
reduction in bias indicates that the matched samples are more comparable, enhancing the
reliability of subsequent analyses on treatment effects. These results demonstrate the
effectiveness of PSM in addressing selection bias and improving comparability between
the treated and control groups when evaluating the impact of FAW mitigation technologies

on maize yields.

Table 5: Balancing tests for propensity score matching quality indicators

Ye Reg Pseu Pse P- P- Mea Mea % Ye Reg Pseu Pse P- P- Mea Mea %
ar iona do udo value val n n Bias ar iona do udo value val n n Bias
Se R2 R2 Unm ue Bias Bias Red Se R2 R2 Unm wue Bias Bias Red
aso Unm mat atche Mat Bef afte uctio aso Unm mat atche Mat Bef afte uctio
n atche che d che ore r n n atche che d che ore r n
A d d d mat mat A d d d mat mat
chin chin chin chin
g g g g
N 20 Poo 0114 00 O 0.0 411 132 50 Ke 20 Poo 0.114 00 O 09 411 55 25
N 21 e 53 02 me 21 le 03 79
M1 Sou 0.179 00 O 06 554 156 50 | Sou 0.179 0.0 O 08 554 86 25
ther 27 19 ther 16 84
n n
We 0.095 00 O 00 332 259 50 We 0.095 00 0 09 332 75 75
ster 6 3 ster 07 73
n n
20 Poo 0114 00 O 0.0 411 132 50 20 Poo 0.114 00 O 09 411 55 25
22 le 53 02 22 le 03 79
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Sou 0.179 00 O 06 554 156 75 Sou 0.179 00 O 08 088 86 25

ther 27 19 ther 16 84 4
n n
We 0.095 00 O 00 332 259 50 We 0.095 00 O 09 332 75 25
ster 6 3 ster 07 73
n n

20 Poo 0.114 00 O 02 411 10 50 Cal 20 Poo 0.114 00 O 0.0 411 248 50

N 21 e 19 85 ipe 21 le 45 06
M5 Sou 0.179 00 O 06 554 156 75 r Sou 0.179 00 O 0.2 554 249 50

ther 27 19 ther 46 61
n n
We 0.095 00 O 00 332 259 50 We 0.095 00 O 01 332 239 50
ster 6 3 ster 44 1
n n

20 Poo 0.114 00 O 02 411 10 50 20 Poo 0.114 00 O 0.0 411 248 50

22 le 19 85 22 le 45 06
Sou 0.095 00 O 00 332 259 50 Sou 0.179 00 O 0.2 554 249 50
ther 6 3 ther 46 61
n n
We 0179 00 O 06 554 156 75 We 0.095 00 O 01 332 239 50
ster 27 19 ster 44 1
n n

Before matching, the mean bias across all methods was 155.7, indicating a substantial
initial imbalance. However, after matching, bias was reduced by 63.5 in NNI, NN5 (67.0),
and Kernel (21.9), indicating the best covariate balance. The NN1 achieved 100% bias
reduction, suggesting it perfectly balances the treatment and control groups, while NN5
achieved 75% bias reduction, indicating moderate improvement. Moreover, Kernel

achieved a substantial 88% reduction in bias (Table 5).
Sensitivity analysis for Estimated Average Treatment Effects (ATT)

The sensitivity analysis for the Estimated Average Treatment Effect (ATT) assesses how
robust the treatment effect is to unobserved confounders using Rosenbaum bounds
(gamma). At Gamma=1, there was no hidden bias with an estimated ATT of -85 and a
confidence interval (CI) of (-95, -70). As Gamma increased (suggesting a higher likelihood
of unobserved bias), the ATT shifted, with t-hat+ decreasing from -85 to -155 and t-hat+
increasing from -85 to 25. The statistical significance (sig-) remains very low up to
Gamma=25 and increases when gamma is>3, reaching 0.999924 at Gamma=8. This
implied that statistical significance began declining from gamma=2.5 to gamma=8.
Similarly, the CI widened from -95 to -70 at Gamma=1 to (-165,45) at Gamma=8. This
showed that uncertainty about the treatment effect was increasing. Overall, the results
suggested that estimated ATT was robust to moderate levels of unbiased bias (Gamma up

to 2.5-3) but was more sensitive at higher levels of hidden confounding (Table 6).
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Table 6 Sensitivity analysis for Estimated Average Treatment Effects (ATT)

Gamma | sig+ sig- t-hat+ t-hat- Cl+ Cl-
1 0 0 -85 -85 -95 -70
1.5 0 2.0e-13 -100 -60 -110 -45
2 0 9.1e-08 -110 -40 -120 -25
2.5 0 0.000103 -120 -25 -130 -15
3 0 0.005899 -125 -20 -135 5
3.5 0 0.06358 -130 -10 -140 4.9
4 0 0.250479 -135 -5 -145 10
4.5 0 0.530404 -140 3.9e-06 -150 15
5 0 0.772371 -140 5 -150 20
5.5 0 0.912268 -145 10 -155 25
6 0 0.972109 -145 15 -155 30
6.5 0 0.992432 -150 20 -160 35
7 0 0.998196 -150 20 -160 40
75 0 0.999614 -150 25 -160 40
8 0 0.999924 -155 25 -165 45

* gamma -log odds of  differential assignment due tounobserved factors

sig+ -upper bound significance level

sig- -lower bound significance level

t-hat -upper bound Hodges-Lehmann point estimate

t-hat -lower bound Hodges-Lehmann point estimate

Cl+ -upper bound confidence interval (a= .95)

Cl- -lower bound confidence interval (a= .95)

5. Discussion

Factors Influencing the Decision to Adopt and Intensity of Use of FAW Mitigation
Technologies

A Double Hurdle model using parameters from Probit and Tobit regression analyses
estimated factors influencing both adoption and intensity of Fall Armyworm (FAW)
mitigation technologies among farmers. The analysis revealed several significant
demographics, economic, and social variables impacting these aspects. Gender
significantly influenced adoption, with female-headed households more likely to adopt
FAW mitigation methods than male-headed households. This aligns with Tambo and Kirui
(2021), who emphasize that decision-making authority often correlates with economic
power. However, Hruska (2019) notes that gender hierarchies can restrict women’s access

to resources, limiting adoption capabilities. Similarly, Bista et al. (2020) indicate that
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women face challenges accessing resources, hindering technology adoption despite
substantial labor contributions. Age of the household head positively correlated with
adoption; older farmers are generally more likely to adopt FAW mitigation technologies
due to accumulated experience. Kihoro et al. (2019) support this, finding that older farmers

are more open to adopting new technologies, driven by expertise and established networks.

Education significantly impacts both the adoption decision and the intensity of use. Higher
educational attainment enables farmers to better understand and implement technologies,
consistent with Feder et al. (1985), who argue that education enhances farmers’ ability to
seek and use agricultural information effectively. Access to financial resources, land, and
agricultural inputs is critical for adoption and effective utilization. Makhura (2001)
highlights that resource constraints are major barriers, especially among smallholders,
reinforcing that better resource access improves adoption rates and use intensity.
Household size positively correlates with use intensity; larger households can mobilize
more labor for implementing FAW mitigation strategies. Sahu and Singh (2020) found that
larger households manage labor-intensive practices more effectively, improving pest
management. Regular contact with agricultural extension services positively influences
adoption and intensity by providing training and information. Swanson and Rajalahti
(2010) emphasize the role of extension services in facilitating technology adoption through
education and support. Access to market information also significantly affects both
adoption and intensity, as informed farmers make better decisions. Makhura (2001) and
Baffes and Rojas (2016) highlight the importance of market information in adapting to

changing agricultural conditions and decision-making.
Impact of adoption on maize yield

The results revealed that adopting fall armyworm management technologies (FAWMT)
significantly increased maize yields for farmers, consistent with studies highlighting the
effectiveness of integrated pest management in enhancing agricultural productivity (Davis
et al., 2020; Prasanna et al., 2018; Baudron et al., 2019). The impact of the four matching
algorithms was significant, and the average treatment effect on the treated (ATT) estimates
were robust across both years, indicating consistent improvements in maize yields.

Findings from Abrahams et al. (2020) demonstrated that integrated pest management
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strategies, including fall armyworm control, led to substantial yield increases for
smallholder farmers. Similarly, Sileshi et al. (2018) found effective fall armyworm
management positively impacted maize productivity in various African regions. The
average yield gains ranged from 29.6 kg/ha to 38.8 kg/ha in 2021 and from 72.5 kg/ha to
105.1 kg/ha in 2022, significant at the 95% confidence level for all matching algorithms
employed in this study. In terms of percentage increase, this translated to 16.3% in 2021
and 26.9% in 2022, resulting in an overall average increase of 22.4% over two consecutive
years. This corroborates findings by Musa et al. (2022a), who reported significant increases
in incomes due to improved fall armyworm control practices, attributing the growth to
enhanced crop health and productivity (Musa et al., 2022b). The increase in maize yields
is closely associated with effective management of fall armyworm (FAW), leading to better
crop health and higher productivity, especially noted in the 2022 season. While promising,
these results highlight the necessity for ongoing support and education to ensure that

farmers can fully capitalize on these technologies (Rosenstock, 2024; Kumela et al., 2019).
Conclusion

The findings from the double-hurdle model, based on Probit and Tobit regression analyses,
highlighted the importance of factors such as gender, age, education, access to resources,
household size, access to extension services, and access to market information in
influencing both the adoption and the intensity of use of FAW mitigation technologies.
Comparing these findings with existing literature revealed a consistent pattern: addressing
gender disparities, enhancing education, and improving access to resources and
information are vital for increasing technology adoption among farmers. Future research
should continue to explore these dynamics to develop more effective strategies for
supporting farmers in adopting innovative pest management practices. The propensity
score-matching analysis provided compelling evidence that FAW mitigation technologies
significantly enhanced maize yields in Burundi, with variation observed across regions and
algorithms. These findings highlighted the importance of adopting effective fall armyworm
mitigation technologies to combat pest challenges and improve food security. Future
research should continue to explore the long-term impacts of these technologies and their
adaptability in different agricultural contexts.
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